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CHAPTER I

1. Introduction

R. A. Wooding C1956) derived the p-variate complex normal distri-

bution. Let FE denote a complex norma. random vector with cuMponents

&J (J - 1, 2, -.. , p), Then each Ej (j = 1, 2, ... , p) represents a

cosplex random vari.ible with real and imaginary components given by

x and yj * It was found that if the covariance relation between the

components of _& had the following form

E(xm x n E(ym Yn) ; E(x T yn) = -E(x ym) (1.1.0)

then the p-variate complex normal density function could be represented

as

H-PiLl-1 x( E'-E (1.1.1)

where L is the non-singular Hermitian variance-covariance matrix and *'

represents the transpose of the conjugate of & . The mean of the vector

k is assuied to be 0 . Wooding (1956) also derived the characteristic

function for the above distribution and found it to be given by

e~q T*'LT

where T is some azbi. --!y complex parameter.

It appears that N. R. Goodman (1963), working independently and

using the same assumptions as given in (1.1.0), has also derived the complex

1
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multivariate normal distribution. He extended the development further

by deriving the complex analogue for the real Wishart distribution, de-

noting it as the complex Wishart distribution. Also, Goodman derived

the distributions of the complex analogues for the sample multiple &1,d

sample partial correlation coefficients. In the complex case, these are

denoted as the sample multiple coherence and the sample partial coherence.

All developments that have followed in this area of complex multi-

variate analysis have been based on the assumption of the density function

specified by Wooding (1956) or Goodman (1963).

Other authors who made early contributions in this area of complex

multivariate analysis have been M. S. Srivastava (1965), N. Giri (1965),

D. G. Kabe (19 66 b), and C. G. Khatri (1965). D. G. Kabe (1965a) gave a

simplified method of deriving the distribution of the sample multiple

coherence and the sample partial coherence. He represented the density

functions in a finite series while Goodman (1963) had presented these as

infinite series. Kabe (19 6 6b) developed the complex analogue some results

in classical multivariate normal regression theory. Srivastava (1965)

gives a direct and simplified method of deriving the Wishart distribution.

Khatri's (1965) contributions were in many areas. He obtained the mLxi-

mum likelihood estimates of the parameters of the complex multivariate

normal given by Wooding (1956) and Goodman (1963); he then derived the

distributions of these estimates. Also included in his work are pro-

cedures for transforming from densities of complex random variables to

other complex random variables. Using these techniques, Khatri (1965)

derived the distributions of the sample multiple coherence.

Khatri (1965) also derives the distribution of Wilks' A in the

complex case. He gives a representation of Wilks' A (in the complex
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case) as the product of real independent beta variables. It is this

development that proves useful to the work given in this dissertation.

Throuch the work of the above authors the foundation for complex

multivariate analysis, based on the assumption of a complex multivariate

density as given in (1.1.1), has been established. It is the purpose of

this dissertation to extend this aevelopment by exa:ining Wilks' A which

appears as a solution to qome inference prcblems associated with this

particular complex multivariate normal distribution.

This extension is covered in Chapte. III by an examination of

Wi]ks' A as presented in the multivariate analysis of variance of com-

plex normal data, the regression analysis of complex normal variables

upon real diumny variables, and discrimination among several complex

nocm•al populations with the samne varia-ce-covariance matrix but with

different means. Also the goodness of fit of a hypothetical discriminant

function is considered.

In Chapter II, some basic theorems dealing with the complex multi-

variate normal are established along with the Bartlett decomposition of

a complex Wishart matrix. These results are used in establishing some

different expressions for the sample coher.-nce and sample multiple

-oherence. These results prove useful in working with Wilks' A in

Chapter III. Chapter IV presents a summary of the work covered in this

dissertation along with possible extensions of this research into othex

areas.

2. Definitions and Notation

Let • denote a o x 1 complex r-andom vector,

(El = [ 2 ,p lxp (1.2.0)
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where C X + = y. . Denote the (2p x 1) vector of real and imaginary

conponents by

n_' = x, 'Y2' "'" ' 2p (1.2.1)

and let this random vector have a 2p-variate normal dist-ibution with

6= E(n') =[J,, , [p2,,2, V V ...

and the variance-covariance matrix given by

S= Eq- 6) (n - 6)']
En = E

where the 2 x 2 submatrices of F have the following special form
Tii

[x- E(X')l[xk3 - E(xk)] Efx - E(x.)][yk - E(Ykk

E[yj E(yj)[xk - E(xk)] E[yj E(yj)]f[Yk - EYk)

a k-2 if j =k

(1.2.2)

(jj [jk - k] if j 9 k2 Lýjk - eJk•

'Then the density function of n is given by

Pc W = (2i- l~ exp . -, - (- 6) •: _ (1.2.2)
N ) (2 Hl)P I 1~ 1/2 e x y 2 '2 - T

provided that IE I # 0 21
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It has been shown by wooding (1956) and Goodman (1963) that if

condition (1.2.2) is satJafied for 5, then _ is distributed as a p-variate

complex normal vector with probability density function given by

P .- P1 E -W exp[-(P - H)*'•(- Q - H)] (1.2.4)

where the mean v_ is given as

•- -Et_') = [N 1+iVI, )12 +iv 2 , ", p+ivp

and the variance-covariance structure is given by the Hezmdtian positive

definite matr'x E, , where

- E(( - _)(_ -

and the elements of E are given as

a 2 if j kck

(ajk + iojk) J k if j 1 k

The density function (1.2.4) will be denoted as CN( j, Z)

Let F(P) denote the distribution function of the complex random

vector j with density given as (6p (u, E) . By the probability that § is

less than E-0 , the following is meant.

F(Y_) - P(i < W - P(6 < OR ; EI A§0) (1.2.5)

where denotes the real part of C and §I denotes the real random variable

attadhed to the imaginary quantity.
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Let &-l' -2' " n denote n independent and identically distri-

buted p-variate complex normal vectors with density given by CH pI, ( )

Then the random matrix S, defined by

ns = -- )l
i-i

where

n

n

has been shcwn by Goodman (1963) and Khatri (1965) to be distributed as

a complex Wishart with probability density function given by

P(s) = r (n]ip-~l-- exp[- tr E-s

where

-P(P-l) P
F (n) = 72 1 1 r (n-j+l)Ij-I

The complex Wishart density function with parameter E and degrees of

freedom n-i will be denoted as CW (Sln-1H•
P

Let ý, where ' ,l & 2' • ], be distributed as a CN (, P )

As in real multivariate analysis, the relationship between the component

an a , --- , o has a very important
p p-1

role in complex multivariate analysis. In the real case this relation-

ship is measured by the multiple correlation coefficient which is defined

as the maximum correlation between one component and a linear contination
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of the others. In complex multivariate analysis, Goodman (1963) has

termed this quantity as the multiple cohxerence and shown it to be given

by

12 Y 1ý11 12 - 21'11'12 (1.2.6)
S 21' '2' " p-I) a a -

where ll, I £21 are obtained from the variance-covariance matrix Z

which is partitioned as

£127'
T 11 ii '121 t /O'PR•oDO(CI

£= i i t _,
£ a

21 pp

GooEji. 2]-963) and <.hat-i (19655 have given the di;strihbtion of

2the samyole fte, , or . as

V(i2) !'(n) (1-p2)n(R2)p-2(1-R2)n-PF(n, n ; p-1, P22i
r (p-l)? (n-p_1) 1p)R

where P denotes (1.2.6), the pcLulation mu'tiple coherence of P withp

i,'*2'k 2' . R deno:tes the sample estimate and F(,;; denotes2f P

the hypergeometric function, i.e.,

CO 2-2jF(n2 n p-1, P2k2)= r(n+j) .(n+j) r(.-1) (P R2)j' - r (n) r(b) r(p-1+j) 9 I
j=O



CHAPTER II

1. Basic Results

There is a great deal of similarity between the multivarlate analysis

of complex random variables and real random variables. Despite this

similarity, it seems ¶,Iorthwhile to include the following results with

formal proofs in order to provide a firm foundation for the material

presented in latter chapters.

In the case of real normally distributed random variables, it is

of great importance to establish the distribution of the square of the

random -variable. The analogy of this in the complex case is the complex

rciandom va~tri•2le time_- it 1L.. .. as oc 'A

in Chapter I, Z is composed of two real, independently distributed normal

2
variables with v = 0, and a = 1/2 . Consider the real random variable

2 2
defined by y = ZZ* = x + y which is the sun of squares of two indepen-

dent N(0, 1/2) random variables. From real univariate theory, it is

clear that

2
X(2 )

y W ZZ* 0 2 (2.1.0)

2

where X 2 stands for a chi-square random variable with f degrees of

freedom.

Let -pl denote a complex random vector with probability density

function given by

S(PIZ)-1 exp(- (E - - .
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Consider the transformation given by

Y-rxl A rxp -EpXl

where A is a real or complex matrix of rank r < p. If r - p, then the

probability density function of the random vector Y is given by

NY,•' P)r.)-l exp[- (A-1Y - J)*'Er-l (A-1 Y - )l•

where J(x 4 y) is given by Khatri (1965)

J = IAI-IA*hIi .

Thus the density function of Y becomes

P(Y') = (IP' AEA*'h)- exp[- (Y - Ali)*'(AZA*')--(Y - A-p)]

This result is stated formally as the following theorem.

Theorem 2.1. If E is distributed accordingly to CN (1_, E), then Y =A

ip distributed accordingly to CMp (Ali, AEA*'), where A is a p x p real or

complex matrix of rank p.

Now consider the transformation

-Yrxl A Arxp 61x

where the matrix A is of rank r < p. The mean of Y is given by

E(Y) - E(A) = AE_) A

and the covariar-e is given by

E[Y - E(Y)][Y - E(Y)*'] - -A _ )(& -

= AZA*'
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Since A is of rank r, it is known that there exists a matrixrxp

C(p-r)xp such that the transformation

\Z(p-r)xl! \C/

is a non-singular transformation. Then Y and Z will have a joint com-

plex normal distribution and the marginal distribution of Y will be

CNr (AP_, AZA*'). This result will be stated as the following theorem.

Theorem 2.2. If & is distributed accordingly to CNp (P, E), then Y = A

is distributed accordingly to CN (AP, AEA*'), where A is a r x p matrixr

of real or complex elements of rank r < p.

Now let ý PX- OC (0, I pp), and make the transformation

Y ~U -
-pXl pxp apXl

where U is a unitary matrix, i.e., U*'U = UU*' = I . Then by Theorem 2.1,
P

Ypxl v CNp (0, Ip). It should be noted that the elements of U must be

constants. If the elements are random variables, the transformation is

a random unitary transformation and the distribution of Y is not necessarily

that of a CH (0, I). In either case

Y*1Y = *U*U = . (2.1.1)

Thus, "'4 remains invariant under a unitary transformation. Now consider

the transformation

Yrxl w Arxp -&pxl (2.1.2)

where the matrix A is of rank r < p and has the additional property
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A A*' = I . This transformation will be referred to as a semi-unitary
zxp pxr r

transformation. As in Theorem 2.2, it is known that the matrix A may

be augmnted with a matrix B sti'h that the transformation

(p-r) xl )

is of full rank and furthermore it is unitary. Thus

( y 'r x l ) U CN (0, I )
S(p-r) x 1)

and from the invariance property (2.1.1)

4; + E;r + . + +;* Y*y + y*y + *** + Y*y + Z* Zrl + + z*z
11 21 22 r pp

and the variables Y.1 Y2 ' ' Yr f Z r+, Zr+2 , , Z are distributed

as independent CN (0, 1) as are the 21' p2,

From (2.1.1) we have

Y*y -- Y*y + Y*Y + "'" + Y*y
11 22 r r

and since Y1 , Y2' " Y for an independent set of CNI(0, 1), then from

(2.1.0)

2

YY +Y*Y +-*. +Y*Y X2 r
11 2'2 rr 2

Also

2

pp
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Then

2
1l + M + + " (Y*Y + + Y*Y ) X2

pp 21 P1 r r2

Since /1
Zý+14r+ + - + z*z + = Y

pp + "'" + Pp ) - yy 1 + " +Yrr

This result is the complex analogue of Fisher's Lemma, and is formally

stated as the following theorem. 2

Theorem 2.:. If AU CN (0, 1 ), then and if Yr A-p--pxi p - 2 2 -r x

where A is a semi-unitary transformation, then Y*'Y % -- Moreover,
- - 2

=*1z - , 2(p-r) and is independent of Y*'Y

-- -p ---

Let X [ ýl' ý2' w heze the . 'Ir'dependent CN (0, E)

and consider matrix of Hermitian forms, XAX*' where A is a real idempotent

matrix of rank r. The distribution of XAX*' needs to be established.

Since A is a symmetric matrix, the spectral decomposition of A may be

used, A may be written as

p
A i=1 --

where the X.i are the characteristic roots of A, and ilie , are the

corresponding orthogonal characteristic vectors of A. Since A is

idempotent of rank r, then X. = 1, for i = i, , r and X. = 0 for
1 )

j - r + 1, , p, th-s the spectral decomposition of A is given by

r

i=l

and
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r r
XAX x * i X a xBI* x *,

Since M p- (0, Z), then the distribution of the matrix Xpxn is given

by CNp (0, I 0 E) where 0 stands for the Kronecker product. Making the
transformation Y- X- , it is seen that Y. n- CN 8_8 S E) for

I~ ~ P

i - 1, 2, , r which is the same as Y C (0, C) since I.8. = 11 p--

and the Y ,p -2' Y form an independent set of CN (0, E) since

'Oj . 0, thus

r r
= a YY?' x x CW (XAX*'IrtE)

i=1 i=l

This result will be stated formally as the following theorem.

Theozim 2.4. X = i I ..•2 " Ft] where -. are distributed as-i 1

Indevendent CN (0, T), theii for A a real indepotent matrix of rank r < p,

the matrix of Hermitian forms XAX*' is distributed as a CW (XPX*'hIrIp p

2. Bartlett Decomposition of a Complex Wishart Matrix

Kshirsagar (1959) has presented an elegant method of deriving the

Bartlett decomposition of a real Wishart matrix, i.e., expressing the

Wishart matrix as the product of a lower triangular matrix times its

transpose and giving the distribution of the elements of the lower tri-

angular matrix by using random orthogonal transformations. This has been

achieved in the case of a complex Wishart matrix by following the above

procedure. The minor changes that are encountered are pointed out at the

conclusion of this section.

Let •I' -2' " 'n where 'E =[li' 2i' "'" ' Cpi ' denote

n independent and identically distributed p-variate complex niormal vectors
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with probability density function given by CNp (9, I p). Denote the matrix

of the vectors by X, i.e., X = R l' -2' " -.n]pxn

Let A denote the matrix defined by

n
A - XX*'

then it has been shown [Khatri (1965)] that the matrix A is distributed

as CW (AInI p).

Now consider the vectors defined by

~12 ~ 22 ~ p2

Z;- ; Z= (2.2.0)

i L i

which are the vectors of observations on each of the p-variates. Each

of the variables Cir is independent and distributed as CN1(0, 1).

Orthogonalize these vectors, , Z p, by using the Gram-Schmitt

process such that the new vectors form an orthonormal basis. The new

vectors, Y-l' Y2 ' "'" ' Y., may be iepresented as

b11 1

b 21 b 22z
2 = 2-1 p2

Y = bPlzI + bp2Z2 + -.. + bPPz-p -1 -2-p
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The b for i - 1, 2, ". , p can be chosen to be real while the b kj,

k > J, k = 1, 2, -'" , p j - 1, 2, , p will in general be complex.

To see this consider (Hohn (1958)]

-Y - b1 -i1

and since b 1 1 is to be chosen such that YT'Y 1 ml, this implies b 1 1 =
v'Z1*

'hich is real. Now 1

Y2 = b 21z I b 22z2

and with the coidition, Y*'Y = 0, this implies-1 -2

b 2 lnZ' - Z + blb 2  . Z*'z = 0-1 -1 -1 -2

21. 22This is a homogeneous equation in two unknowns, b and b A complete

solution is given by

21b -(z*' z 2)t
1 2

b 2- (Zn' • Z )t1 1

where t is an arbitrary parameter. Continuing in this fashion, it can

be shown that b3 3 is proportional to (Z*'ZI) (Z*'Z 2 ). So if t is chosen

to be real, we have b22 real, also b33 real, and all other bii will be

real. Attention should be called to b kj, k > J . For a real t, this

does not imply that bkj will be real. Thus the bii, i = 1, 2, , p,

will be restricted to be real.

Then the above system may be written as



16

F~1 11F
b-0 0 z!

_ b21  b 2 2  .-. 0 zi
-2 -2j
S.. . .* .1 .J (2.2.1)

bpl ; ... bpp
p•.Y pxp pxn

Denote (2.2.1) as

pxn pxp pxn

Since

ZI

-2

X L= ý2' "" nxn

ZI

pxn

Let B = [bj] . Since the diagonal elements of B are real, then the

diagonal elements of B = B must necessarily be real. Hence, bii for

i - 1, 2, ... , p are real elements and the reciprocal relation may be

written as

X -B Y (2.2.2)pxn pxp pxn

or as

b 0 • 0 VY

_ b2 bn * 0 Y'
-2 21 b22 -2

Z b b .. b
-pL Lpl p 2 p 1p -
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which implies that

Zk - bklYl + bk 2Y2 + + bkkYk , (2.2.3)

i.e.. the Z_ can be expressed in terms of the unitary vectors Yk

k- 1, , p

From (2.2.2) it is seen that the matrix X can be represented as

the matrix B times the semi-unitary matrix Y, then

XX*' = BYY*'B*' = BB*' , since YY*' = I p

The distribution of XX*' is CW (Alnl1 ) thus BB*' : CW p(AnlI p) or that

A = BB*' . Thus a complex Wishart mattix can be expressed in terms of a

lower triangular matrix, whose diagonal elements are real and the non-

zero off diagonal elements are complex, times the transpose of its conjugate.

Also note that

k =1, - p
Y*_ = b (2.2.4)-jzk j = 1, 2, ..-

this result follows from (2.2.3).

Now keep ZI, _2 , "'" , -k-I fixed. This automatically fixes

Y-' Y2' ... ' Yk-l , bh11 "' . bk-l, 1 ' b 1 2 ' ... ' bk-l,k-1 by virtue

of relation (2.2.4). Also recall that the ir are distributed independently

as CNI (0, 1). Consider, from (2.2.4), the bkt, t 1 1, 2, , k-l, which

may bee written an
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bki =Y.'Zk (2.2.5)

k2 2 -k

bk k-1 -kY-i'k

and by holding Z2' .:,:•d, this becomes a semi-unitary

transformation from Ekl' Ek2' "n to b.- bk'kn' k2'ki' bk2 ' '* b k-i

Cbserving that

[Z ,Z 2 "' Z. ",, " " ,Z ]

fixed random

automatically requires that O'soi

Ii F'21 .k k-I . pi

'12 ý22 ... Ek-1i2 k2 "*"

ln 2n kIn "" " pn.

fixed random

Thus

b Y*'Z for Ji 1 = 2," ,k-Iij -j -k

is distributed a- a linear combination of the kt where t 1, 2, , n

and the kt are istributed as independently CN, (0, 1). Thus

bkj I (1(, i)
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since var(b ) =Y'Y = 1, and E(bj) = 0. Furthermore, the bkt formskj -j-j jk k

an independent set for t - 1, 2, , k-l. Observe that for t # t'

cov(bkt, bkt,) cov(Yt'Zk *,Yt.'Zk) Y*IYt' 0

Thus (2.2.6) is the conditional distribution of the bkj with

ZI' Z2, ' -k-l being fixed, the Zt's do not enter into the distri-

bution, so (2.2.6) is also the unconditional distribution of the b kjS,

for j < k and the b kj's form a mutually independent set. Hence, the

result

bkh, b k Independent CNO(0, 1) (2.2.7)
k-i k k-1

As stated previously, the transformation (2.2.5) is a semi-unitary trans-

"formation from E bk ta , , b, bb . This trans-
fkl' ' 'kn ki k2 k k-i

formation can be completed with in - (k-l) I new random variables in such

a way as to maintain independence between bkl, bk 2 #. bk k-l , and

the [n - (k-l) random variables, so that the complete transformation

is unitary. Since the transformation is of full rank and unitary, then

*kl•kl + 'k2•k2 + + t**nkn

b*kb + " + b b + [n - (k-i)] random variables.
kl k1 bk k-lbkk-l

Rewrite the above as

Z•'Zk = bi b + + b b + In - (k-i)] random variables(2.2.8)

-k-k kl kl k k-lbk k-i 228

and note the independence among the variables on the left once more.
X2
X(2n)

- l S. . .. .......... 2 , but by (2.2.3), it

is seen that

LA
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2
-_*ýk -k b•1.kl + ... + bk k-lbk k-1 + Nkk

Also, by virtue of (2.1.0), it is seen

2

bk*bl +-+ b* bX2(k-i)
ik +k k-lk k-1 2

Thus by Fisher's Lemma, it is seen that

22 __2 [n __- _(k - l ) ]_
b 2 = z*'zk - (b*lbk -+ +* I b b X2(n (k-1))
kk -kk ki k k-bk k-1.) 2

2andb is independent of bkl k-1 andZ 1 Z-1an kk "- k k-i -1 -2' .k-

This result is true for every k = 1, 2, , p.

In b rmnary, it is seen that a complex Wishart matrix A, may be

represented as the product of a lower triangular matrix, B - [bkj , where

"kk "- , k =1, 2 .ar rea and h - > '4 " ""ti1

the transpose of its conjugate where the

b "' Independent CN (0, 1) for J < k, k = 1, 2, -.- , p

and

2
2 • X2[n - (k-l)]
kk 2

These results are similar to that of the decoqpositicn of a real

Wishart matrix in that the b k Independent N(O, 1) for J < k,
2

k - 1, 2, " , p ard b kt X (k
kk (k-1)]



21

3. Coherence Between Two Complex Random Variables

Ruben (1966) obtained, in the case of real bivariate normal

situation, a very good approximation to the distribution of the cor-

relation coefficient. This was done by expressing the sample corre-

lation coefficient as a ratio of a linear combinatico of a standardized

normal variate and a chi-varlate to another dhi-variate, where all three

were mutually independent. This work has been extended to the multi-

variate situation by Kshirsagar (1969), who gives a matrix representation

of this result for correlation between two vectors.

Folling Ruben's wodk in the bivariate case and Kshirsagar's

work in the multivariate case, similar results have been obtained in

the complex case. These will be presented here.

Consider a random sample 4i' -2' - P n of size n from a

CN2(ý, E) where

k - L-z 2 k 12 + iv2 a 21 a 2 1

The Wishart matrix of sum of squares of products is given by

A~ CW2 (Aln-11E)
A- [a 2 I a2

where

n
a ij =• (Z ij - 1 )(Z ij - )()

J=l

and

k1 1 
fik

z. for i 1 , 2
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The coherence between z and z2 is given by

a 12

S= 22

and the sample coherence is given by

a 1 2
r=

Define

(l•0p*) 1/2

and

- rr= , ,. (2.3.0)

It" is the quantity r whose distribution will be approximated.

NoW make the transformation from _ to Y by the following trans-

formation

Y2,1 = C(-

where C is given by

10

C

a 1 1 (12pp*) 1/ 1/2

Ii
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From Theorem 2.1, the distribution of Y is given ]y CN2 (0, EC' - 12)

and, furthermore, the Wishart matrix A has been reduced to its canonical

form, i.e., D - CAC*' lu CW2(Din-IlY2 ). These results are sumarized in

the following table

Variable Y = C(

mean I 0

variance E I

Wishart matrix A D - CAC*'

The Wishart matrix D - CAC*' has the form

a1 1  -P a1 1  a 1 2
-- +

2 2 1/2 a (lpp*1/2o ii e~ll iop") a ai2 l-p*
1a 11  11'22

Dm

-P *a] al2
11 12 6

al2 (1-pp *) 1 / 1 12 a (l-pp*)

where

a11PO* a'2o a12 * 22
S11 1 2 2 (1-pp yG (1-pp*) a (1-pp*)

OlI(I-Pp' 112(-P 11022 2

Since D CH (Din-lIII), it may be written as D = BB*' where B is ap

lower triangular matrix given by the Bartlett decoampsition. BB*' is

given by (observing the bi for i - 1, 2 are real)

Fb 0l bý b'1 b b'O
11 11 2 1 1121

b b b bL ( 2

22]22 2 1] 211 (21 2*1. 2
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and equating the elements of BB*' with the corresponding elements of

D - CAC*', the following system of equations is c tained.

2 a1 1
1 112

a1 P al
b b* 12 12 1/2

1 1 1 o2 2 (1-pp) 1/2 0112 ,; 1/2

a pP* al 2p al 2 p &*22
b1212 + b22 112 1- - + 2

12 2 o 1(1-PP*) o1o2(1-po*) o122(].-Pp*) 22 (I-pP*)
11 I01122 2 22

Solving the above system for the aij (i 1, 2 ; J 1, 2) the following

solutions are obtained:

S2 2
a12  2ll bl2 (2.3.1)D. 1111

a12  1 1022(l-pp*) 1/2(b 1 1 b12 + 2 2
12~~ ~ 1b2 1 2 1 1)

2 , b2 22
In o (1-p *[(hb b* + b ) + p- b b* + p*b b• + • • bn •

a22 022 (l12pp 12 22 p 11b1 2 1+ 12 1b

Now, from Section 2, it has been shown that the

2
2 X2 (n- 1 )
11 2

2

b 2 X2(n-2)
22 2

b 1 C 1(0, 1)

and all are mutually independnt. Upon substituting (2.3.1) into
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(2.3.0), the following representation for r is obtained

b -12 + ý b ll
b22

which can be rewritten as

C1 (0, 1) + p ý2n-2

r- r(2.3.2)
X2n- 4

where Xv denotes a real chi-variable with v degrees of freedom. Attention

should be called to the distribution of r in '-he null case, i.e., p = 0,

- CN(0, 1)
X2 n- 4

which has the appearance of what could be called a complex t.

Consider a probability statement about the complex random variable

defined by (2.3.2)

CN(O, 1) + -

P(r < i0) = . ... <r

r2n-

or rewritten as

P(L ' 0)

where

X2n- 2  x2n-4
L C(O, 1) + a0 (2.3.3)

F2o, +,-
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Using Fisher's normal approximation for a chi-variable with v degrees of

freedom, i.e., X n- N 2,2 (2.3.3) can be rewritten as

Thus L is a linear combination of independent complex normal variables,

which is also a complex normal random variable. The mean and variance

of L is given by

E (L) = n-:3*
4 r0 -4

V (L) 1= + . + 'r r*r
4 4 0 0

and

P(L < 0)=lex [(1 - E(L))*(L- E(L))(V(L))d-]PCLI <) [VI(L)]L

-E (L)
V (L) -uu*

=V -L) -e du

CN(V(L)

Replacing 0 by r in -E(L)/P(L), then

4 4
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Now following Kshirsagar's (1969) work, a matrix representation for

coherence between two complex vectors will be derived. Let the variance-

covariance of two complex vectors X 1 and Z be given by

E (2.3.4)
121 I22 q

q (p+q) x (p+q)

and let the matrix of corrected sum of squares (s.s.) and sum of products

(s.p.) of observations from a sample of size n+1 on these variables be

given by

ll 12

S - (2.3.5)
$ 21 $ 22 q

p q (p•q) x (p+q)
p q

which is based on n degrees of freedom. Then the following matrices can

be obtained:

-1

matrix of regression coefficients S1 2 Sll, of X on Z

-1

B - matrix of s.s. and s.p., due to regression S1 2 S2 2 S2 1

-1
A - "residual" s.s. and s.p. matrix S -S S1 S II S

11 12 22 21 11-2

A+B - "total" matrix S 11

-i c12E2The corresponding matrices for the population ar2 1- E 21

nd E Z 12 2 E-1 respectively.11dEll2 11 El 12 22 21,
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If the vector Y-(p•)xl defined by Y' " [x'Iz'] is distributed an

(p+q) (., E) where It' - [uxJtz] and E is defined by (2.3.4), then the

matrix S, defined by (2.3.5) is distributed as C (p+q) (SWnIE) and from

this density it has been shown by Kabe (1966) that

Sl1192 f Cp(SlI. 2 1 n-qjE 11.2) (2.3.6)

and that S1 1 -2 is distributed independently of B0 and S2 2 . Also,

Kabe (1966) has shown that

"S22 U CWq(S 2 2Injf' 22 ) (2.3.7)

and that RO, for fixed S22, is distributed as

Sp(8, 2(

and is independent of SI1.2

Now let 0, n, M, F, C, and K be lower triangular matrices such

that

E22 00*'

E11*2

S2 2

A" PF*

B - KK*'

A+R - CC*'

Define further
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U " '(B0 - B) M (2-3.9)

V- * 1 M

U -1112*-
Wv ri 1Z *-

12

-M IF-IS 12~
-12

R- C ,

L - RR*' - C-IBc*'-1

Transform to U, V, and W fzvm B0 , ' 2 2 ' and 31 1 - 2 , respectively, in '2.3.6),

(2.3.7), and (2.3.8). Then it can be shown

( u1) ii (i 1, '.. , p; J - 1, 2, , q), the pq variables

in U are independent CN (O, 1),

(2) vji (J - 1, "- , q), the diagonal elements of the lower

triangular matrix V are independent X2 2(n-J+1)/ and the

off diagonal element vkj for k > j are independent CN(O, 1)

and independent v j 1

(3) wii (i - 1, 2, -' , p), the diagonal elements of the lower

triangular matrix W are independent X2  1V-2 variates,

while wv, i > i, are independent CN(0, 1), independent of

w also.

ii

Referring back to the transformations in (2.3.9), it can be seen

2
L -RR*' in the matrix genera-lizatie- o! r , which is the ratio of
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regressicn sum of squares'. to the tota' sum of squar -s and RR*' is the

matrix gneralization of r 2/l-r2 , the ratio of the regression sum of

squares to the residual sum of squares. Observing that

U + PV - n-1S12M*'-I

where 0 is the population matrix corresponding to k, then

W-1 (U + PV) (2.3.101

which is the matrix mnalogue to the result (2.3.2), i.e.,

o X2n-2
CN (0, 1) + P

X2n-4

which corresponds to Ruben's result in the real case. Then

E - U + PV - W (2.3."'

is the matrix analogue of result (2.3.3), and also corresponds to

Kshiruagar's result in the real case.

Fro this result (2.".11), one can obtain results similar to Ruben's

about every element of the matrix F, however in multivariate analysis, one

prefers am •verall criterion based on the whole matrix rather than indi-

vidual results on the elements. Hence, no attempt is L le to pursue this

further; instead, we shall be considering overall criteria such as Wilks'

A in the comlex case.
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4. Multiple Coherence

In the case of real multivariate normal analysis, an extensive

amount of work has been done relating to the multiple correlation

coefficient, i.e., the maximum cozrelation between a random variable

:• and a linear combination of a set of variables xI, x2 ,x
P

If , where

•r a . . i. a11 0 f 12 ***

11 • 'ii 12
?.= _____

r 0y *" F CYpp
pT P2 P: 21 PP

L

d'enotes the variance-covari•an.c struc:-ure of this set of variables

,X2," x , it can be shown that the square of the maximum cor-

relation coefficient is given by

-I

p2 -211112
XPxl IP1 C1 !P(,'" 1 p-I) Opp

and the saine multiple correlation is given by

S -- 1

21A11A12
( , " , X _ ) a

P1 p-1 pp

where

A F a2 zA21 pp|
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-s the sample variance-covariance matrix based on a sample of size n.

Fodgron (1957), following Ruben's (1966) approach, has shown R 2/(-R2

"..9 distributed as

1

X + Tj2+_(P (,_,2))2iX-i]
2Xn-k-i

where the X and the unit normal variate U are mutually independent.

Trom )t;, )o•cson has obtained a normal approximation for the statirtic

P.2/(I-r2). These results have been achieved in a somewhat similar

fashion for the multiJDe ch',erence in a multivariate complex normal

r- ituation.

Suppc".& '• CV (i, F). Without loss of generality, it will be

esui• tTiat a'-• a .d E has the foil!a.ing special form

o-i .. o PI
0• 1 -. 0 0

0 0 ... 1 0

P 0 0 1

where P is the true multiple coherence between %p and &2' " p-i

as defined in (1.2.6). This can be shown as below:

Let CN 01, E), where
p
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i 1 1 012 ip
2. . . .

and E = - E 1

a "pl ap2 E L £2 1  a pp

Cbserving that El is an hermitian positive definite matrix, then thare

Avists a D such that I,,- DD*' and D l I Make the follouing

transformation from E + Y by Y = A(_ - 1_), where A has the following

form

A=

a 1/2

pp

then E(Y 1x) = _ and var(Y) = AXA*', observe

I ii]
p-i 12 1/2--

ppAEA*'=

12 D*'-l 1/1
12 ~ 1/

app

Furthermore, the multiple coherence remains invariant under this trans-

formation, since

2 12 1112P&-I 2= pp

and
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Z D~llD-lE E 1

2 21 12 2 111 IE12

P7 p(sY21..Iyp- 1  app Yp

P 2  -P 2

Thus we have

where Ep

P-1l

E~~ L Ei £

Qmsider the true regressim of Y __ on Y'l"l Y 'wh a be

written as

whee 1 -c'IP- I PII1 p2' E P- p . Rake the following

trans format-Io
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at-

P P Y

p p

ware a2, a3, a 1p-i are so chosen that

-2-.-3- .l- 0i

i.e., find p-2 vector orthogonal to E , and noting the following relation-

ships among the x's

var(xi) = I for i I, 2, p

cov(x , x ) = a'a 0 for i J; i = 1, 2, - , p-i
i ' j = 1, 2, - , p-i

cov(x , x.) = 83'a m 0 for i = 2, , p-i

.ov(x, x ) - 0'ai 0 for i = 2, , p-i

p i ji

and

cov(x1,x p) - covY, pp -) '*

=P

Thus we hav

x 'CN (0, ( )
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where

1 0 "" 0 P

0 1 0 0

(2.4.0)

0 0 .* 1 0

P 0 ... 0 1

Let -' ý-2' -n denote a random sample of size n from a

CN (0, E) where Z is of the form given by (2.4.0). Let A denote the

complex Wishart matrix associated with this sample, i.e.,

n
A= . i ' • CW (AInIE)

i= -- p

It is desired to look at the Bartlett decomposition of this Wisha.t.

matrix, but the distribution of A, is not in the canonical form. By

making a transformation of the original sample, it is possible to

express A& as

Aý = CrT*'C*'

where T is a p x p triangular matrix whose elements are independent random

variables, the off diagonal elements being CN1 (0, 1) and the diagonal

elements being X variables. To see this, consider the following argument.

Let QCN (0, E), E is hermitian positive definite, thus
-- p --

E - CC*' Transform from A to Ay by

S. Y

AY - C1lA C*'-1
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- cC*'

or

SE CAYC*' ( CTT*,c*, (2.4.1)

which is the desired result.

Now if C- %i CNp(0, Z) and E is of the form (2.4.0), the matrix C,

such that C-1EC*' 1 - I is givwn by
p

J1 0 0 0

0 1 ... 0 0

0 0 .. 1 0

0 • 0 (I-P 2 ) 1 / 21

and from (2.4.1), A is given by A =CTT*'C*'. First examine CT,

t11 0 . 0

t- 1 t 2 2  0

CT • I
cr3 ..L 0  (1 -p2)1/2 [ ** t tpp

Kpl p p p-1 pp

§, (lp2(11/2 t t

PT + (l-P 2) 1 /2t' (1_p2)1/2tp

I



observing

'T + (l-P 2 ) 2t' (Ptll [ ' 2: 0 p2)2tl

and letting X' represent this quantity, thca

2 1/2tx' V ('-P 2 )1 " 2 t 1 •4

and CTT*'C*' is given as

CTT*I C*I -

! XST*I ( 7-Y'" t:

Y, x A

observing that

XX* = [Pt + (1-P 2 ) 1/ 2 t1 (Ptl+ (11. 2)I/2t1
11 pI 11 p1

+ (1p2 p-I

i=2

Hence [ -,Al A2 TT*'

A = i -- (2.4.2)
A 2 1 % X 'T * ' ( 1 1 ¢ ! 2 t 24

L 2

interest lies with the quantity R 2/(1-R 2. Obsk r-vL that
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1-R2 JA (2.4.3)

ihll " p

which may be rewritten

(1-P 2 ) ii
I_2 . I 1 i

1-R 2 2

ITT*'I ((-P 2)t2 + X'X*)

(1-P2 )t2pp

{(1-P 2)t 2 + X'X*1
pp

then

R2 X'X*

_-R2 (1-P2)t2
pp

I{Pt + (1_P 2) 12t } 2 2 p-+ (1-P2) • t .t*.

11 p i=2 t*

(1-P 2 )t2
pp

or

2 Itpi + (P/(1-P 2) 2 )t ill2 + pi t lt*

2i-2-R 1 (2.4.4)IR 2 t2

where Itpl + (P/(-p2 ) /2)tl11 2 represents the modulus of the quantity.

Let - (- t p + tll and usinQ the fdct that t P' CN, (0, 1)

and t which is a chi-variable and can be approximated by a real

N(V2 (2n-2) , - ) the 6 can be approximated by
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SCN1 +

(;ý4n 5- (1-P2

then

R (1 + .1 X2 + x2 p- -(i-l)

l_2 2
1-R x (n-p-i)

where the ncncentrality parameter X is given by

p2

(1-p2)

if P 0, i.e., the true multiple coherence coefficient is zero, then

i_- . 1 FF2 j [n-qa i, 2[n-(p-l)]l

This is exact and follows from (2.4.4).



CHAPTER III

1. A Test for Equality of Means

In the case of k real p-variate normal populations, tests have been

developed for testing hypotheses related to the means of these k popu-

lations. Test statistics have been developed by Roy, Lawley, Hotelling,

Pillai, and Wilks. Wilks' statistic, usually referred to as Wilks' A,

is the simplest one and is related to the likelihood ratio criterion.

Thus it has the desirable properties associated with the likelihood ratio

procedure. It is for these reasons that the complex analogue of Wilks'

statistic will be used to develop tests for distinguishing between the

means of k complex p-variate normal populations.

Let samples of size nit n2, ... 1 nk be available from k - q+l

complex p-variate normal populations with means 11(1) , u_(2), * , 1M(k)

and the sam variance covariance structure given by E. Let E denote

the vector of responses for the Ith member of the a population (Z - 1,

2, "'" , n ;a = 1, 2, - , k) on which the observations are made. It

is desired to develop a test for the hypothesis of equal means, i.e.,

Ho: p(1) = p(2) - - (k)

against the alternate hypothesis that the populations have different

means. Represent the alternate hypothesis by Ha.

Giri (1965) has shown that the likelihood ratio criterion for certain

hypotheses about complex multivariate rormal populations possesses optimum

41



42

properties which are characteristic of this test in the real case. These

properties will not be investigated here, but since the likelihood ratio

test has been found satisfactory for the problem in the real case, it will

be used here in the complex case. The author feels that the desirable

properties are maintained.

Letting N = nI + n2 + - + nk, then the likelihood function, Q,

may be written as

1 k na -=11
Q1=exp - L [•£ (•)]*'l-l[-Ra - •()

( NP(IEIN) N -

The likelihood ratio statistic is given by

Max 0
A=

C MaxQ

where Max Q0 is the maximum of the likelihood function under the assump-

tion that the null hypothesis, Ho, is true and Max Q is the maximum value

of the likelihood function over the entire parameter space, denoted by 0.

The test is given by rejecting Ho when A is less than some specified con-c

stant depending on the size of the test.

Usina Girn's (1965) results, the Max is obtained when

- K na

cc 1

and

k na

iwhere T n
Nili'
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The Max Q is given when

n
aS --

Sna a - a-

and
n

k a
A A L wh e r e A a at - E (a . a

After some ;implification, it can be shown that

I Al
c ITI

and observing that

where B is defined by

k
B I nl .(

a-=

Then th-. likelihood ratio ,jtatistic is given by

IAI
A

The statistic A is the comrqi!x analogue of the resilt obtained by Wilks;c

it will be referred to as Wilks' A in the corplex 'ase and Aenoted as cA

Gup-r (1973.) has derived the evact distribution of A when tys

alternate hIpothesis is of unit rank. He gives the explicit expression
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for the case of p 2, 3 and general degrees of freedom for the hypothesis

and errox.

The results obtained by application of the likelihood ratio principle

may be summarized in the following complex multivariate analysis of variance

table (CMATNOVA).

Source of Variation d.f. s.s. and s.p.

k

a=I

Within groups n-q A = t

k n.
T-Mrd n = N--1 t-B = (E a-ý. )(q -r

a=1 £=i

t (by subtraction).

That the degrees of freedom are indeed q for the between groups and n-q

for the within groups will now be shown by examining the distributions of

the matrices B aad A.

Define a p x N matrix X by

x = RII' -12' F 'nl- 21 ' ý22' -2n2l -Ikl' k2' 'knk

Let ENN denote an N x N matrix composed of all ones and let eNxl denote

a vector with all elesients being unity. Also define e an N x 1 vector,

with zero everywhere except in the na positions; there are ones in all of

the n positions, i.e.,

e= [0 0 0 " •1 1 1 0 0 " 0]

n a ones
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'-%en the matri,7eq A, 31, and A+B may be written as

2- -e - X = XCX*' , (3.1.0)

A = X[I I e e iX*'= XDX*' 311

a1 n aaI

A+B = X I -N E X*' = XEX*' . (3.1.2)

It should be noted that the matrices C, D, and E are idempotent of ranks

q, n-q, and n, respectively.

Observing that

E(X) = M = (iii(), ]_(i), , v_(1) I". (k), _i(k)' " , i(k)] (3.1.3)

and recalling that

P_• CN ()j(a), r

then by Theorem 2.4,

(XM)C(XM)*' I cw ((x-M)c(x-M)*'IqE) (3.1.4)
p

Thus the degrees of freedom associated with the between groups sum of

squares (s.s.) and sum of products (s.p.) matrix B, is given by the rank

of the idempotent matrix C which is q.

From (3.1.3), it can be shown that

E(XCX*') = qE + MCM*'

and tnder the assumption of HO, i.e., equal means for the k-complex
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p-variate populations, M can be written as

M - •lxN

where H represents the common value. Observe that under Ho,

MC- .

Then

(X-M)C(X-M}*' = (X-M)C(X*'-M*')

XCX*' - XCM*' - MCX*' + MCM*'

= XCX*'

Thus

XCX* I, Cwp (XCX*'jqlE) if p_(l) p (2) (k)

Now the distribution of A - XDX*' needs to be established. From

Theorem 2.4, it is seen that

(X-M) D(X-M)*' CWp ((X-M)C(X-M)*Iln-qlE)

And the degrees cf freedom associated with A are given by n-q, the rank

of the idsmpotent matrix D.

Now

(X-M)D(X-M)*' - XDX*' - XDM*' - MDX*' + MDM*'

and it can be shown that

MD- .
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Hence

(X-M 0 X- - XDX*' "' (XDX*I n-qlE)
p

Attention should be called to the fact that the distribution of A - XDX*

is independent of the null hypothesis, i.e., regardless of whether Ho is

true or not, the distribution of A is still CW (Ain-qlt).
p

Also, it should be noted that A and B are distributed independently.

Since, as in the real case, two forms XCX*' and XDX*' are independent if

CD-0 .

To summarize these results, it is seen that

El Cl (BiqJE) if p_(1) - _a(2) (k)
p

A "'CV p(AIn-qIz) independent of H0

and A is distributed independently of B. The test statistic, cA, is given

by the ratio of the determinates of the complex Wishart matrices A and

A+B, i.e.,

I Al
A= =c IJA+B I

Khatri (1965) has shown that the distribution of A, where A isC C

defined as above, is the same as the product of p independent real beta

variables, i.e.,

IAI p
I IA+BI i-l

where ui B(n-q - i+l, q) and all are independent for i - 1, 2, " , p.
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Furthermore, he has shorn

2
-milog cAP p

where m = (2n-q-p) and "V" denotes "approximately distributed."

Hence if Ho is true, -m 1-g cA will be distributed as an approximate

chi-square variable with degrees of freedom given by 2pq.

To summarize the procedure for testing the hypothesis of equal means

among k = q+l complex p-variate normal populations, one must first cal-

culate the matrices A and A+B. Then, consider the statistic A given by
c

IAl
c IA+BI

and compute -m logcA . If -m log cA is greater than X2 at the desired

a-level, then reject HO, otherwise do not reject Ho

2. A Test for the Dimensionality of the Mean Space

In the last section a test for equality of the means from k p-variate

complex normal populations with the same variance covariance structure was

developed. The hypothesis, Ho, implies that the mean vectors of the k

populations would lie in a complex space of zero dimension, i.e., repre-

sented by a point in the complex space. If H0 is rejected in favor of Ha,

then the means of the k populations may lie in a complex 1 dimensional

space, that is they are collinear, or in a complex 2 dimensional space,

that i3 they are coplanar, and so forth up to a complex k dimensional

space.

In real multivariate analysis, it is important to know the dimen-

sionality of the space spanned by the mean vectors for this is equivalent
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NOT REPRODUCIBLE

to :( ;Icws r":' zunib r i, cascrir u tt fan.t 'c.• that ar Z n•,h;Z..iy

to distinguish among the k-populations. This is true also in the complex

normal situation. In this section a test for the dimensionality of the

complex space spanned by the mean vectors will be developed and will be

shown to be equivalent to the number of linear discriminant fmictions

needed to discriminate among the k populations.

Recalling the complex multivariate analysis of variance table that

was dlvelopeC in the previcus section, and adding a column for the expec-

tation of the s.s. and s.p. matrices, then the table is given by

T

Source of Variation d.f. j s.s. and s.p. E(s.s. arid s.p.)

Between groups q B - XCX*' E(B) = qE + MCM*'

Within groups n-q A = XDX*' E(A) = (n-q)S

TOTAL n j A+B

Now M was defined by U3.1,4) af.

E(X) = M = [p(1) ... _(1) I' 'Jj(k) ... 2(k)]pxN

Denote the rank of M by r(M) and observe that

r(M) = r[_(1)[ , E2(2)- - - , p_(k)J) - r(h)

which is equivalent to the number of linearly independent points repre-

senting the means of th' k populations. Denote the k populations by

7T 112' *- ' TTk and conmider a linear combination of &, an observation

from one of these populations, given by &*'§ . Suppose further that

£*'j(1) - 0 p(2) - ..... j*'p(k) - 6 ,
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i.e., that WE*' has the same mean in nI' w2' " ' Then this linear

function given by £*' would not be useful in discriminating among the

populations, i.e., one could not determine which population _ came from

by examing 9_*'• . Furthermore, observe that

L*'M = .. 6 ] = 6 lxN

then

L*'MC= 6 elxN C=6 elxN - ee -N E

= 6 0' = 0'

and hence

£*'MCM*'Z = 0

Conversely, if _,*'MCM*'_ = 0, this implies

k
I n a(u O - u) (u C - u-)*' =0 (3.2.0)

a=l

k n £*'j (a)
where £*'V(a) = u and u = X ' But (3.2.0) implies that

A a=l1

each term of the summation must be zero or that

u = u forall a=, 2," k
a

From this it is seen that

S(Z*(2) (k)



51

So if _*'( has tho same mean value in f1, I 21 "2 " i k then

_*'MC - 0 and conversely if _*'MC = 0, then Z*'_ will have the same

mean value in i', W 2 1 ... ' Wk In either case _*'F- will not be use-

ful as a discriminator.

Thus a linear function of _, given by L*'F_, will not be a good

discriminator if

k*'MC - 0 (3.2.1)

An adequate number of linear discriminators will be given by p minus the

number of independent I's which satisfy (3.2.1). For any !J, such that

(3.2.1) is satisfied, _*'_ will be called a covariate. Observe that

(3.2.1) is equivalent to

MCM*'k = C

So the maximum number of such covariates is equal to the multiplicity of

the zero characteristic roots of the matrix MCM*' . Denote this multi-

plicity by s. Now the rank of MCM*' is equivalent to the number of non-

zero characteristic roots of MCM*', say r, which is the number of linear

discriminate functions needed. Hence, we have the number of discriminate

functions needed given by

r= p-s

Let the s covariatts be given by
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and let the matrix I, be defined by

i*' (1)

9*' (2)

L - (3.2.2)

&*' (s)~

sxp

then

Lsxpppxk = VE lk NJ, V- V_ sxk

since k*'(t)& (t = 1, 2, " , s) is a covariate and this implies that

1*'(t)v(a) v, (t = 1, 2, , s; a = 1, 2, , k). Since X(1),

Z(2), , £(s) are independent, this implies that the rank of L is

s, i.e., r(L) = s . Thus the hypothesis of needing r discriminate functions

is equivalent to the hypothesis that there exists a matrix L of rank a

such that

L11 = VEk

for some unspecified v . A test for this hypothesis will now be developed

by using the likelihood ratio criterion.

Recall that the likelihood function, Q, was given as

1 e_(- _1 ,, -i U (Ol)
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n

By adding and subtracting W n and simplifying, may be
SQ=l

written as

exp ex(a (a
Qx IPNn aN(a) -v (a))E ()-(a

Assuming E to be known, the Q can be written as

Q (constant w.r.t. unknown parameters, j_(a)

e x ( _ .

The parameter space WI consists of the 2pk parameters given by ii(l),

p(2), "- _(k) .The maximum of Q with respect to Q is given when

&a- )

Now the likelihood function must be maximized siabject to the con-

ditions of the hypothesis of needing r discriminant functions. This is

equivalent to the hypothesis that there exists a matrix L such that

H: LW(a) = V ca 1, 2, , k

or

H: L•j = vElk

which is equivalent to saying the r(MCM*') = r . In all cases it should

be noted that the matrix L and vector v are not specified. The maximi-

zation under the assumption that H is true will b" -arried out through

the following procedure.
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Make the following transformation

L ) = X() a = 1, 2," ,k

LfI()_ =z(c) c a 1, 2, , k

choosing L1 such that

LZL*' 0

Letting R2 denote the exponent of Q, then

R n (Z(c) - _(iC)*'E-(•(c) - P_(a))
ci=l

k

+ n. (Li (a) - LIý (CO)(L EUL*') (Lj(a) -,~)

a 1

+knj•Ll(c•) - Lp•(a))*'(LI]L•~')-I(LI•(0x) - Lly•cl))

and under the assumption that the hypothesis is true, the above becomes

k -1

n.Y (a~c) - L 12 (a))*(L L') (a~c) - L I a
n=l1

and to maximize the likelihood, the exponent R2 is minimized (observing

that R2 is real). Hence

2 
k

Min R = Min nj(v(a) - v)*' (LTlP')- (v(() - V)
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uiaC dIfIbIzmstJattOm W4th zmqemt to Lý' (1) OweLum t a 3[*,N

etb t Isuecond ter, in RI u v=u1ie. -Th=

Kin . 2 .min n3 n14i(a) - vl*'(I -L*#) 1 (Lj(et) - v

k
- Mmin n tr (TIL*' -1Z (a - v I LF, 40 -vIaa=l ..

k

Min I n tr(IZL*') (L () - LE + LC- v 1(4(a) - + 1 -v
-r= I . ..

where

k n (a)
- ~k

n a

a= 1

Min R2- Min tr(LEL*')-I

k k k -k

Ia~ n(L - )( )j*' + nl CLE(a) -LEI(LE(a) -Z*

and minimizing this with respect to v, i.e., v - Lj, then

Min R2  Mint. tr(LEL*') LI.J n(,[(a) -]Ea - Z* *

-1
S Min tr(LEL*') (LBL*')

(w.r.t.L)

where B is the between groups s.s. and s.p. matrix from the CMMNOVA table.
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JIM 14%4 tho T.

2 -1' 112Min P. H in tr(TT7*)v HL T*')

Min tr Y(C -1/21 -1/2)y*

where Y =(TT*I) ' observing YY*' =. So the problem of minimizing

with respe,''. to -, zv'duces to mJnimti-in-i the tr[Y(7-1/2BE-I/2)Y*'U

subject to the Ixrit'n ,,:,t YY• . in the ca.e of real positive

definite 0v4m,• .- , tri cf.' Vwur>... civt n bh the sum of tfe

smallest s roots of -"BC [I~ao(1*5)], i.e., the s smallr-, roots

of

1 /2 - ,-],

or

-0 i1, 2, s, S

Thus the maximum value of Q under H is given as

(constant) • exp(- sutm of the smallest s roots of E-1/2BE-I/2)

and the likelihood ratis st~itistic k is given as

- (sum of the smallest s roots of 12 )-1/2

and

-2 in A (sum of s smallest roots of -112BY-112

I ? ,( f I ' + - .. +r r•2 ii



• - -1/2 -1/2

The fi.tributioc -if -2 In k is an asrmpt.otic chi-square with degrees of

...eeda given by the number of parameters speciZied in fl minus the nuiber

o0 restrictionm of the paraneters specified by the hypothesis.

Rao (1965), in the real case, has presented a geometrical argument

for determinina the degrees of freedom for this particular test. Wani

aniC Kabe (19701 and Kshirsa:rar (1971) have presented an analytical

3rc'mient whicl is somepwhat .a-.ier I;o follao for the non-geometrician.

:-hirsagar's tr'cec'ure will be followed here to determine the dearees of

t_-redom 'or tie c'h u-', -,st u:dircxensionalj y.

"he nW~e- o- o.rvie-tr .cfied in P is given by 2pk. The number

- arete' •,• •"-'-• 7 e r.ax;.iT ticn o_ Q under H needs to be

.etrined. 1e 'O. :: > .dui> for >avirnzinc 9 under H. First the

-.dnsfcrmatic0_, " L it.. , took

, 2,", k

Llu (1)

an h xpn~ 2 2
and the ex~eirt1 R 2was minimized, wher- R was given as

2 k2 nc•[l( ) - v_]*'(L.LI*')-I[I(,•) - •

a= 1

k -1
+ n 0( ,) I l.(ca)]* 'L EL*,) [z(ca) L LlP(a)]

I ' 1- 1 - -=].

?,'at I P~irt ft
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~a. AIstie -e dome in atp a

at" It An of Part 11, i.e., min of Part I! with zeqpct to

L 1(u). The numbr of paraimeters restricted was 2(p-s)k

or 2rs.

Step II: Min of Part I, i.e., min of Part I with respect to v

The number of _arameters restricted was 29.

This left

Min R2 - Min tr(LEL*')-I(LBI.*')
(w.r.t.L)

Now L is an B x p matrix of rank s and the number of parameters restricted

needs to be determined. Write

L s[H G
a p-s

and note that

H- IL i[I IH-1G])

Returning to

Min tr(LZL*")- (LBL*')

whidh can be written as

Min tr[L*' (LZL*')-I (LB)]

or as



I.P 5,

. -. . "t~p j

whe," I.- c. - ,- ,r matx;x. Mhoose P to be H]b
thus

Si wh, r, ? P-G-o0

hence the min'tum inhro]¶ps only :Thct.i-ans of L0 , where L, has ,ldmension-

ality given by >' - .'JS C!.Jv U [ > (1-s) parameters are restricted

in the rinimiz,, , . >*, (Iv,'. 2hrc:cro the number of

parameters rY-.-t ri.-:t-: 'ir ,. ¶>J•2- 2 ,, .

and the deqcz:ees cf Dr::" tir ' - test is given by

AI. = Upbc - [2,-: + 2s J.s(p-s)]

where q = k+1

In sunrm•.a- ty . : t of the nypothesis that the number of linear

discriminant fLns.t'Th ,, ctr>' nýub'.-r of covariates is s p-r, is

given hy the.....

(q-rf- 2-;- (p-r) (q-r)

where 'r + . ''jr' tha s- smatliest roots of

where f i t .- ' -... ............. ..q . jn-j . . matrix obtained from the

CMANqVA tait I1
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If I Is inasm, the U ob utfusft Adh-q, sAos A Is On wift

@.a. ad s~. frm * ~a C*A Nil Io Ube u esed to obtalkan a- ai

ut tst for the m er of discriniaut tmctions moted. 2bm test wilt

be given as thea smallest roots of

B -nq A' lB - o- 0

The test statistic is given by

S(n-q) 
(2) (n+ + r+2 + .. + np X2

r+1+ r+2 p 2(p-r) (q-r)

where r ' *%.%n p are the s smallest roots of

IB - nAl = O _.

Instead of considering the roots of lB -AAT-' , consider the

roots of

lB - r 2 (A+B)l - 0

or
IB_ L._j_-

B l-rE A =0

1-r2

i.e.,

2 2r A rn-- or1_r 2  n-q 1-r 2

or

+---r
n 2_r2



for large a. thing the substittion

then

n

and

A r+ + Xr+2 +' + P 2
=P - log 11 (l-r

OYT

P 2 2
2n log IT (1-r2) ' X2(p -r, -

i=r+l . (q-r)

where the r are the roots of IB - r(A+B)I - 0. This gives a procedure
1

for estimating the dimensionality of the man space. The procedure is

to tert sequentially the following hypotheses.

dimensionality space criterion

p 2 '2
H: r-O 0 1 pt. - 2n log 1 (l-ri) "X 2

i-l

2' 2
H: r-l 1 2 pts.(collinear) - 2n log 11 (l-ri X2(p-1)(q-1)

i-2

p 2 2
H: r-2 2 3 pts. (coplanar) - 2n log 11 (l-r) - X2(p_21(q-21

1-3

If the means are known, then the number of discriminant functions can be

determined exactly by examining the rank of P where v' is defined as

V I E
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To m this, consider L as diftne,! by (3.2.2) and mdar x,

hYPOtheis that the numer o' discriminant functionu in r, thee

Li- 11-

Obs'~rve

L11~~~~ = LpIg- E ýlk - I E

or

L spI k . (3.2.3)

Now the rank of L is s since (1) , P (2), (, (s) are linearly inde-

pendent and this is the exact nurnber of covariates that exist. From

(3.2.3), we have

L E = 0 (3.2.4)sxp pxp

where E = p . , and from (3.2.3) we bave

pxp pxk kxp

L*'(l)E 0

Z*'(2)E 0

t*'(s)E = 0

and there are no more non-trivial solutions to the system Et 0, thus

we have the r(E) - p-s which is the saae as r(P) - p-s - r

Thus the rank of P is the Paame as t-,e nu1ber of discriminant functicnb

needed. Atcention should be called to the fact that this is the exact

number of discriminate ftmctions needed and not an estimate.
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tO the fki t oectia. imlke' A wa dfiia as

c A+51

and it was shown that the test statistic for the hypothesis of equal

means, i.e., ii(l) - p(2) - .- uk), was given by

- log AZX 2 (3.2.5)c 2pq

The distribution and correctio•a factor m 2n - p - q were derived by

Khatri (1965).

When the dimensionality of the mean space is zero, this is the same

as saying all of the means are equal and the test was gý.vn as

S2n log I (1-ri 2pq (3.2.6)

SI 2

where the ri are obtained from IB - r (A+B)i - 0. But the hypothesis

that the dimensionality ic zero is the same as the hypothesis that

i_(i) - i.(2) .(k). Thus the two test statistic (3.2.5) and (3.2.6)

should be equivalent. Since

IA! p 2A - -- - I (i-ri)9
IA+BI i-I

it is seen that the two tests differ only in the constants a - 2n - p - q

and 2n. Khatri's result has bren corrected, so it will be .sod in (3.2.6)

and the correction will be adjusted in general without a formal proof.

Thus a test for dimensionality being r will be 9-ven as
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As stated before, the bybsa th the dietm.nuty Is r Is

equivalent to the hypothesit of Lsp9) - v, fo a -1,, 2. kC ,

which is also equivalent to the hypothesis that r(L) - a a p-r. M5w the

matrix L and the vector v are unspecified, and for a new dneorvatin 4

from w (a = 1, 2, .. ,k), Lg would provide the s covariates, *'()•,

*'(2)C, --- , L*' (s)Z . Now these s variables all have the same mean

in ir (C1 - 1, 2, .-. , k) and are no good as disrriminators. Consider

now Lrxr such that 0L*L' - 0 . Now these r variables are umoorrelated

with !& and these can be used as discriminators. Unfortunately neither

L nor L1 is known, but the maximum likelihood estimator of L can be

obtained.

In deriving the likelihood ratio procedure, the

Min tr(IXL*') -(LBL*')

was considered. Now the maximum likelihood estimat-i of L wouli be the

matrix L that does minimize the above. Recall that T LE and the

above became

-1, 1/2 1/2
Min tr(TT*') MT BE T*')

and then aet Y - (TT*') /2T, and obtained

ýn tr [Y (E.-1/2 B-1/2)Y*'

subject to YY*' - I
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To find the solution, consider the last s eigenvectorE Y satisfying

(E-1/2 B-1/2 - A I)Y = 0 (3.2.7)

corresponding to the a smallest eigenvalues cf

JE-1 /2 -_ J 11 0 . (3.2.8)

The condition YY*' - I will be satisfied since the eigenvalues corresapmd-

ing to distinct roots are orthogonal and eigenvalues corresponding to

repeated roots can be made orthogonal. We can take T*' to be Y*' from the

s orthogonal eigenvectors [Y1' Y2 ' X Y1 corresponding to the s

smallest roots and

-1~/2,3 -1/L*' -• I!T*' $*

and this is the maximum likelihood estimator of L*'

If we consider the largest p-s eigenzectors correEponding (3.2.7)

and (3.2.8), these will provide the r discriminant functions. To show

that LEL*' - , consider

(E-I' 2BZ -1/2 A)Y - 0

or

(BE-1 / 2 
- E 1/2 Il¥ - 0

or

(B I)- 1-/2 Y 0

or

(B - Z E I)_ - 0

where = /2 . Now the Y's were mutually orthogonal, i.e.,
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(0 ii'
Y*',(i)Y(j)

, (I i-J

fi b.utI - E-1 / 2 Y , thus ' (i)EZ,(J) - 0, which implies that XLI -

Now consider a new observation C from one of the populatione.

w (a - 1, 2, •-- , k). It is desired to place this observation into

one of wr (a = 1, 2, --- , k). The procedure for this discrimination

process is as follows:

Step 1: Find the matrices B and A by finding the C24ANOVA frti

the sample observations.

Step 2: Obtain roots cf
B-r2 (A+B)j = 2 >2 > >2

~r 1  2 p

Sto±p 3: Deterir.ne the dimensionality sequentially by finding the

smallest val'e of r auch that

-m lug n (1-r ) X2 (p-r)(q-r)

i-r+1

is insignificant.

Step 4" Determine the eigenvectors

(B - r (A+B)II.(i) - 0 i - 1, 2, ,

2 2
corresponding to r21 , r. r

Step 5: Normalize the t(i) by

0i-i

if E is not known use Z - A/n-q
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Stap 6: Then the discriminant funct•icns are

S(1) -Y
1-*' (2)§ Y Y2

t*'(r)• -Y
r

If a new dbservaticn is observed and the mmasurek dharac-

teristics are recorded as 0 then

"•'IME_0

L_§o

•-O

The distance (modulus) of this point from the estimated

mean of r is the quantity tU at will determine which

pcpulation that &0 wl~l go into, i.e.,

12

4 * + +L

Step } Determine the minimum of

2 2 . 2d I •ý d , .t o d , ' t

and assign 7r if vininum is d 2 In case of a tie, one
iJ4

could randomize.

3. Goodness oi Fit of a Single U othetical DiscrIminant Fumcticn

In the last section, a test of the hypothesis that r discriminant

functions are needed to discriA!aate aron the j- +1 couplex p-variate

nermal populations was developed. The following discuseron will center
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around thq ca!-.f woi tho i-rnisional:;tx. ie one, i.e., only one discrim-

inant function is needed and with tests about this single discriminant

function. In this section a test of the goodness of fit of a single

hypothetical function will be developed. This hypothesis will consist

of two parts, (i) whether a single h.ypothet. cal function is adequate,

and (ii) whether the hypothetical function agrees with the true dis-

criminant function. As in the real case, the hypothesis will he stated

as the collinearity aspect and the direction aspect. The test statistic

will be partitioned into tw.t parts,, one corresponding to the collinear-

ity aspect and the other to the direction aspect. Independence butween

these factors will be shown.

The CMANUO\', as presented in the last sections, can be considered

to be a recression of the complex vector _ on the real dummy vector

variable Y . The durmmv vector variables, YV' -2 "' q ' have com-

ponents of either 0 jr 1 depending on which population the _ comes from,

i.e.,

Y' = [0 0 ... 0 ... 1 1 . . .1 0 0 ... 0]
-a n1 n nk

and the regression can be written as

E()_ = _ Jf _ 7 (X a 1, 2,' ,k

= + (11 - -)Y + " + (-Wq i-k
~k -l -k- )y -kq

which can be rewritten as

E(X) k kE1N + 6Y
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where

and

YNxqM [Y-1' Y2' ' -q

with

[ - -k' H2 -k " -q -k

With this in mind, the CMANOVA, may be written as

Source of Variation d.f. s.s. and s.p.

Reqression(Between) q B = C C-1 Cxy yy yx

Error(Within) n-q A - C = C C C Cxxy xx xy yy yx

TOTAL n A+B = Cxx

1
where for J = (I - EN). then

NN NN)

C = VJY C = Y'JX*'
yy yx

C = XJY C - XJX*'
xy xx

Define Ai as the matrix consisting of the first i rows and columns

of A and likewise for B. WithA 0 =I and B0 =1. Then
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1Ail

IAI A p IAi.11
A---- H

c IA+JI i-i IAi+BiI

I il÷i_lI

which can be written in terms of regression as

'A' 1-1
- JIA+il i 1-

C A =_11 - -= 12
i=l A Ai+Bil i=1 1 - V

I A i_1+Bi11

where R is the multiple coherence of with

i' 2' -i .. This fact follows from

I Ail
2

IA _.. I _-_R _________ i(•1' •2"'" ' •i-l' Y-'

IAi+Bil 1- R2"•i i' R1PF2' &' i-1)
I A i_ 1+B._1!

which is evident from (2.4.4). It can be shown that

2 2
2 2 2 - B(n-q+l-i, q)

1 R (F ,2 ' X2[n-(q+l-i)] X2q

Thus,

2

c 1 ui 2 (3.3.1)
Wc2 

i 
R
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whero u". B(n-q+I-i, q). This is the result obtained by Khatri (1965),

who has shown that the u1 (U - 1, 2, " , p) form an independent set

of bete variables. Another definition of A is given by equation (3.3.1),c

pi.•., if A t Ae Nistributed as 1 ui where ui (i m 1# 2,°, v)c ~i=i p

are indepeneently distributed as B(n-q+l-i, q), then A is said to haveC

a complex Wilkq' A distribution with parameters n, p, and q, denoted by

A(n, p, q). Thus

CP

pA= IT U
i~ 1

p

i=2

U U An-i, p-1, q)
1 c

U u2 A(n--?; p-2, q)

The hypothesis of equal means can be restated in terms of the re-

gression of • on Y as one of no association between 9 and Y . This

hypothesis can then be broken into the following sub-hypotheses

H: has no association with Y

H22 2 (eliminating Fi) has no association with Y

H p p (eliminating % 2' &2' " ) has no association with Y

If the overall hypothesis of no association is rejected, then at least

one of the Hi (i - i, 2, , p) Is rejected.
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Observe that the criterion for the sub-'- nothesis is given by

I Ai.
1 ,.ll ý Q .. E 9 ,

_______ i(•l' •2' ' i-i' -'
2 1ui

JA.+BiJ 1- R2

I A. 4B i.11

It is desired to develop a goodness of fit test for a hypothetical

discriminant function. Denote this function by 9_*'_ = Z and consider a

non-singular transformation of I - Z by L& = Z where the first raw of

L is P_*' . It is now desired to test that Z is the reason that the

dimensionality is not zero. Considering the population means of the

transformed variables, Z1 is the one that differs from Z2 , Z3 , ., Zp

If this is true, then after eliminating Z1 the set Z , Z will havep

no association with Y

Thus the test statistic is given by

- pC 2
c i 1  ui

where cA ILAL*'I/IL(A+B)L"I , i.e., the transformed CMrNOVA. But

observe

I LA.*L'I IAI
M - MAIL(A+B)L*6' IA+BI c

thus the test statistic is given by

- A A
A c ( c
c - T*-'(A)/i*'(A+B)(3.3.2)

U
1

uI -
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but from

P 2A IT (1-r.)
i~3l

so the test statistic becomes

rp 2
IT(1-r 21r)2(3 )

I (lri2 (3.3.-?)

u Z*'AZ./Z*'(A+B)k i=2

Cbserve that the second factor is the tes. statistic for the dimension-

ality of one. Th.: first factor tests that the discriminant function is

given by 1*' . Observe further that the two factors are not indepen-

2
dent, since the r. (i = 1, 2, , p) are not independent. From1

2
(3.3.3) an approximate X test can be constructed.

Now a factorization of A into two independent factors that measureC

the direction aspect and the partial collinearity aspect can be achieved

or A can be the factor into two independer.t factors measuring the

collinearity and 'partial' direction aspect. The use of the word 'partial'

will be discussed later. In the real and ganeral case this factorizaticn

was developed by Bartlett (1951), who gave a geometrical argument.

Kehirsagar (1970) gave an analytical argument for the same factorization.

The work presented here in the complex case is a cotbinaticn of the two,

with extensive uqe of Kshirsagar's work. 'iie factorization of cA into

the direction and 'partial' collinearity aspects is presented. The

alternate factorization can be achieved in a similar manner.

If the hypothesis t.>at L*'ý is the only discriminant function is

true, then 1*'& is the Oniy variable that has a different man aiong the
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k populations. Any other linear combination of &, uncorrelated with

£*'E, has the sare mean in all the k groups. Let L be a p x p non-

singular matrix with £*' as its first row and let L be such that

LXL*' - I . (There is no loss of generality for thick assumption.)

Transforza from • to Z, where Z' - [Z, Z2 , , Z ] by

Z L~

Then Z is the hypothetical discriminant function and Z2 , ,Zp are

all uncorrelated with Z7, as LEL*' = I . Under the hypothesis,

ZZ all have the same mean in the k groups. The test for the
p

hypothesis has been developed and was shown to be on (3.3.1)

A A
A A= C (3.3.4)
c P*h /k *'(A+B) 9 cA 1

Now assuming that the factorization of A can be achieved and Ac c

can be represented as

A- A - A
c c2 c 3

where A is the direction factor and A is the 'partial' collinearity

c 2 c 3

factor.

The alternative factorization is given by

A- Ac c4 cA5

where A4 is the collinearity factor and cA5 is the 'partial' direction
c4c

factor.

Tc saow that the above is indeed the case, consider the following

arg'unint. Let D be the between groups matrix for the transformed
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variables Z, then

D - LBL*' - Idij]

and the within groups matrix is w, given by

W-LAL*' - [w i]ii

As in the real case, it is cbvious that W has the Wishart density givet)

by CW p(Wln-qlI) since LEL*' I I and likewise D = LBL*' is distributed as

a non-central complex Wishart, with the non-centrality parameter due only

to the difference in means of Z alone in the k groups and thus affects
2

b11 only, i.e., b1 1 is a non-central X with 2q degrees of freedom. So

the density of D may be written as

W? ()!q 1)§ (b11

where § (bl) is the contribution due to the non-centrality. An explicit

expression for § (bl!) will not be necessary in this development.

Now W C CW (WIn-qlI) where W - (wij]. From this we haveS~p

- ~Wily1 :

w i- (i - 2, , p) and wij - wij (i,j - 2 ... ,

are independently distributed. The -- are cr1cplex standard normal

and independent variables, while the matrix W - (w is a complex

Wishart of order p-i . This follows, as in the real case, from the fact

that if S • OW (S!n!I) andP
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then S2 2 - S1SS1 is of order p-k and distributed as a complex
thnS22-1 22 21 11 12 -i

Wishart and is independent of S and S 21SS . So applying this result,

we have

W 11 CW P_l(W6l n-q-If 1)

In a similar matter, P can be split up as

dil (i 2d iid. di!
dl(i = 2, , p) and dij = d -ii d (i,j 2, - , p)

and are independently distributed. The d i/(d 1/2 are CNI (0, 1) and

are inmerendent and D = (dij is distributed as CW (Dlq-1f ) All of

these elements are independent of W and hence W

Consider the variable

which is a CNI (0, 1) andom variable. To see this consider the conditional

308;sity of 0 for d and w l fixed. This is CN (0, 1) but does not

depend on wll or b l, hence it is "h;- nconditional distri-Ixztions. Let

e denote t~he colurn vectors 8. (1 - 2, 3, o' ).

Thus the following results -re obtained

w• (W n-q-l_ .

D CW ip_ jq-1 )
0 ,• I '0 )

N P-i -'0 1



77

and all are independent. Observe that 0 @*' is distributed as a pseudo-

complex Wishart with one degree of freedom.

Recaii that Wiiksc A with paraewters n, p, q was aefined as

SA(n,p, q)
c A+BI c

where A % CW (Amn-a I.) independent of B ^ CMW (BIqIE). The parameter np - p

is the d.f. of A plus the degrees of freedom of B; p is the order of

A+B; q is the degrees of freedom of B. Using this terminology, then

IWI
-- c A(n-q-1+1, p-1, 1) = rA5

I -q-e e*,~c'

jW+e o*i nu A(n-1, p-, q-1) =A

'A(n-1, p-i, q-1) = A
c~ c3

"c A(n-1, p-.l, 1) = A2

[•+5+e 0*11 lc

Furthermore, independence between cA2 and cA3 icz obtained or independence

between A and A is obtained. The same argument for the real case is
c 4 c 5

valid in the complex situation, i.e., if A ' CW (AiflI) and -i (0, - )

(i 1, 2, - ,n), then

JAI
t n

nI, ÷
S iil-- 1
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is independently distributed of A + *
i=l

NCw, it must be shown that A i- indeed given by the product

*h " CA3  And then it will be shown that C.A2 is the direction factor

and cA3 is the 'partial' collineaity factor. The alternate factori-

zatirn, CA •A 4  •A5 , can also Lie shown. Consider

CA2 C" 3 =i1+ixo e

wl 1

!•• e-' I

and observe that

+ ~ * 1 + 1  W+DI (3.3.5)

then the above can be written as

1wI
wll

lw+: I
b 11+W

it I (A+Es) I -L*A ' I

(I*' 1A) IL(A+B)L*' I

Since w Z*'A &id (w + b ) £*'(A+B)
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I-I
I Al

1At

• MIS) I

ci

and it is seen that (3.3.4) is verified.

Now it must be shown that cA2 is the direction factor and cA3 is

the 'partial' collinearity factor. Consider cA2 first. To see this,

define a matrix H by

W11 w12  .. lp

w 21

wij + dij

U(i,j - 2,**,p)

and a vector k by

11 , 1 2 /'7 11 l 1 p

then observe that

D + W - H + k*'

and

IHI - w Ii + 61 (3.3.6)11I



A'ld from (3.3. 5), that

Hi + k k*m( % (w 11+b 11)Iwl + D- + e 0*'1 (3.3.7)

Then cA2 may be written in teims of (3.3.6) and (3.3.7) as

(b 11+w
c^2 : •n IH + k_ k*11

'then the abov,! may, be written ýis

(b +w )- 1 Ii' 1

(W11) 1 + k*'HI-,

SjTnce IH + k " = IH' 11 + H 1k k*'j ý *H (I + k 'i k and A_.

cen be furt, ie .-ivpj3ife :-o

' II II

(w ) T1 - k* (H + k k*,)-k]

this can be seen by using the fact that

(I + PQ)- I P(I + Qp)-1Q

Noting tnat

k".'$ = k_*'L-1DL*'-1L*,/[Q_,,(L- 1DL*,- 1)M]1/2

then c2 rlal le writte.n aý,

l+V,*'L-'DL*' (L~](W-D) L*'-1] 1L- DL*'- z
c(w77) i ( -A .. * (, • - D ., - )j J_
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and observing that

b 'w 11 *' IL (W+D)L*' -11

w 11

then t*'L -1DL*'[ EL 1 (W+D)L*'- ] 1 L1 "DL*S 1t

1- (-1 D*- 1

c2 *' (L - 1WL*' ')t/t*' CL1 (D+W)L*'1Lj

and using the fact that D =LBL*I and W = LAL*', then

1 - 2*IB(A+B) 1B9./E*'BR

Then cA 3cc'r be represented ais

A

c 3 A

JIA

MABl

1 - 1*'B(A+B) BZZ1 B

Returning to the CHXIOVA for the transfortmd variable Z -Lý, it

can be expressed as

Source of Variation d.f. s.s. and a~p.

Regression (Between) q LBL*' - D - C C lC
ZY yy YZ

Error(Within) n-q LAL*' - W - C z*

TOT~AL n L(A+B)L*' - C
ZE
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The A cnn be exDressed asc

Ic C I~y I cxx
c A = X (3.3.8)C iCzzI IcXI

then using the fact that

I C x x C < c H -c - Cc -& C I = c I I x - C c - C 1 3 .9
IC Y c yy yx xx X c l (3.3.9)j yx yy

it is seen that another expression f-r A is give.- byc

A = C YY XI(3. 3.10)
iC

Now (3.3.9) i-, a measure of ttt "lacý: of relationship" between L& and '_

ind (3.3.10) is a measure of the "lack of relationship" between Y and LE

multiplying and dividing (3.J.10) by IC yy.tI , the residual of Y with

the effect of Z1 = t removed, A can be written as

Ic.t *, c•.
A = 

"

c IC Y I ICY tI° Iyyl cyy~t

Consider the first factor, using (3.3.9), this can be written as

c c YI I~ -c C C-c I £.i'C . _____'A_

_Cyy.tI Ictt.y I ct . - _Cy_- 9 -

IC I IcttI IC *'C L £*'(A+B)i
yy tt t xx-

Hence another expression for A is given by

" cA cA I Cy•.IC

."A . cA-Ic .Y (3.3.11)t*•.M/9*i(A+B)5• !cy.tI/icI Ic I~t
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which is the test statistic when 1*'E - t is eliminated, thus measuring

the association between Y and Z, eliminating t . Now A must be factored

into A and A . This will be achieved by factoring the numerator andc 2 c 3

denominator of (3.3.11).

Let § denote the sample projection of t on the Y space. The re-

gression of _ on Y is C C-1 C , thus the regression n! t - o*'. on Y
- yy yx

is X*'C C- Y . The sample proJection § is given by § = 1*'C C-1 Y or- Y yyy- - Y yyy-
by §-m*'Y where m*' *'C C- . Let L denote the remaining q-1 linear

functions of the Y's .Then IC yy. zI can be factored into I C §..z - C y.§zl

This follows from (3.3.9). Likewise IC tI may be factored into

yy"x
IC yy.t[ ={C§§.tl.{% y.§t I and c A may be expressed as

A=
c IC§ ht .IC Y*§t 1

or as

IC :~I 4ICYY.§ Xli
C IC. CY.§ I'

Now it will be shown that

=lc§§.tI "

Now

C §x= m*'C mC§§.x yy x

_ *'c cc -C c-1 c ]C-c k
Cxy Yy yy yx xx xy yy yx-

= Z*'C C- I - t*'C C -i -c C-1  c 1
- xy yy yx- xy yy yx XX Ny yy yx-

- Z*'B£ - £*'B(A+B)- Bi
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and

C M*I W nt

k*' c- [C -c c-ic Icc 9
-Y xyy yy yx ttcty yy yx-

1R*'C C (1C - CI 2(R.t*Sc 9) -1 *lc IC - c k
- Y xyy yy yx- - xx- - xyyy -

WCr C (1 C - (C k Z.lc /i*'C M)C C I~FY xyy yy yx- - XY- xx- yy YX-

-i 'C 2k~Ic c c z~ - [((*'cC c k) /R*'c 9.
- Y xyyYX- - ý ,~ yx- - xx-

-9,*SBZ ((9*IBR) 2/Zk*I(A4B)R.Z

Thus

ýC §§Jx &*'BZ - Z*UB(A+B)-lB

9* (A+B) X

k 'B (A+B) aR.B

2R*'Bf, PR*'A~t

Z*'(AB~

L*'B(A+B)- BR.

Z*' (A+B)9.

*In a similar matter, A 3follows. Thus we have

c3c
and A - Ic
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oN w e , is a measure of the association of 5, the sample projection
C&

an the Y space, with the ý space with the effect of the discriminant

function, t, removed. Now S - m*'Y, where m*' - 1*'C C- . Observe
Y xyyy

that m is determined by &, the given direction, thus one would expect no

association to be present if 1*'t - t is eliminated. Since Y - m*'Y is

consi,1ered first and then the y's are considered after eliminating L0'1,

cA3 is called the 'partial' collinearity facror. Considering the y 's

first and then considering § after the elimination of y will give the

alternate factorization, i.e-,

c c cA4 • cA5

where cA4 is the collinearity factor and cA5 is the 'partial' direction

factor.

A is the collinearity factor since it depends on the number, but
c 3

not the direction, of the remaining q.-1 variables.

In summary, we have the test for the hypothesis that 1"*'i is the

only linear discriminant function needed to discriminate among the

k - q+l complex p-variate normal population based on the statistic

A
A- c AAc c*'AY cA2 cA3

Z*'(A+B)Z

z eB (A+B) 1BI JIA
1-

SAIA+BI

*' L*'f(A+D)- 1 B
1-

£*' (A+B). L *'AL
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where cA '2 A(n-1, p-1, 1) independently of cA3 ' A(n-l, p-l, q-l)p where

SA2 is the direction factor and cA3 is the 'partial' collinearity factor.

1'

{



CHAPTER IV

SUMMARY

Through the work of Wooding (1956) and then Goodman (1963) the

foundation for complex multivariate analyzis was established. This work

was extended by the major contribution of Khatri (1965) who developed

much of the basic theory needed for the analysic of complex multivariate

normal randor variables. It was thir author's intentions of furtht-r

extending this development by examining the complex analogue of Wilks'

statistic as used in the multivariate analysis of variance procedure and

as used in the discrimination problen.

Chapter II of this paper contains the basic theorems necessary for

the development of the analogue of Wilks' statistic as developed in

Chapter III. Also included are results pertaining to the deccmiposition

of a complex Wishart matrix. This decomposition was fundamental in

establishing results a'out the coherence between two complex random

variables and the cch' -nc. between two complex random vectors. One

possible extension of this area is the investigation of the complex t-

distribution which occurs as the distribution of the sample estimate when

the true coherence between two complex normal variates is zero. This is

in direct analogy with the real case.

The 4evelopment pertainS .g to Wilks' statistic was presented in

Chapter III. In Section 1 of Chapter III, a test for the equality of

means of X corplex p- ,ariats normal populations was developed. ' is was

87
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accomplished by use of the likelihood ratio criterion. A possible ex-

tension of this section would be to examine the properties of this tect

procedure when applied to complex random vaiiables. Some work has been

done in this area b; 5iri (1q65). In Section 2, a test for dimensionality

of the mean space was developed and it was shown that this was equivalent

to knowing the number of linear discriminant functions needed to discrimi-

nate among the k-populations. A needed extension is to determine the

exact correction factor that should be used for the chi-square test. In

Section 3, a test for the aoodness of fit of a single hypothetical dis-

criminant functiua was developed. The test statistic was factored into

two independent par' s, one for the direction of the hypothetical discrimi-

nant function and the other to test the 'partial' collinearity of the means.

A possible exteasion would be the aoodness of fit of more than one dis-

criminant function. Another extension would be the goodness of fit of a

single discriminant ftiction from the vector space of dummy variables.

For the p-variate complex normal as defined by Wooding and Goodman,

Khatri (1964) has noted "that one can handle all the classical problems

of point estimation and testing hypotheses concerning the parameters. of

complex multivariate normal populations much as one handles those for

multivariate populations in real variables." This is true for the prob-

lems that have been considered in this paper. As a matter of fact, all

the work so far with the p-v',riate complex normal as defined by Wooding

and Goodman has been dne by paralleling the real case. Even so, this

type of development is important because complex multivariate analysis

has possible use and applications in stochastic processes and spectral

analysis of multivariate time series and point processes. N. R. Goodman

and M. R. Dubman (1968) have considered the tL ory of time-varying
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spectral analysis and complex Wishart matrix proce .es and. the assumption

of stationarity and normality. They have considered coqplex Gaussian

processes, Wishart processes and time-varying spectral estimates along

with distributional results associated with them. This author feels that

the work reported in this dissertation will be helpful, indirectly at

least, in such investigations.

David Brillinger (1968) has considered the canonical analysiz of

stationary time series. The distributional rea!ults abtrt canonical

correlation of corplex normal vec ors are likely to be useful in this

area.

Ui
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